Telangana State Council of Higher Education,
Govt. of Telangana
B.Sc - CBCS
Common Core Syllabi for all
Universities in Telangana
B.Sc -BIOTECHNOLGY
(wef 2019-2020)

Telangana State Council of Higher Education, Govt. of Telangana B.Sc., CBCS Common Core Syllabi for all Universities in Telangana B.Sc - Biotechnology (wef 2019-2020)

FIRST YEAR- SEMESTER I CODE COURSE TITLE COURSE HPW TYPE	CREDITS				
	CREDITS				
BS 101 Environmental Science/Basic Computer Skills AECC-1 2	2				
BS 102 English CC-1A 4	4				
BS 103 Second language CC-2A 4	4				
BS 104 Optional I- : Cell biology and Genetics DSC-1A 4T+3P=	7 4+1=5				
BS 105 Optional II DSC-2A	4+1=5				
BS 106 Optional III DSC-3A	4+1=5				
TOTAL	25				
FIRST YEAR- SEMESTER II					
BS 201 Gender Sensitization AECC-2 2	2				
BS 202 English CC-1B 4	4				
BS 203 Second language CC-2B 4	4				
BS 204 Optional I- Microbiology and Biological Chemistry DSC-1B 4T+3P=	7 4+1=5				
BS 205 Optional II DSC-2B	4+1=5				
BS 206 Optional III DSC-3B	4+1=5				
TOTAL	25				
SECOND YEAR- SEMESTER III					
BS 301 SEC 1 : Enzyme Technology SEC-I 2	2				
BS 302 SEC 2: Immunotechnology SEC-2 2	2				
BS 303 English CC-1C 3	3				
BS 304 Second language CC-2C 3	3				
BS 305 Optional I- Molecular Biology and r-DNA DSC-1C 4T+3P= Technology	7 4+1=5				
BS 306 Optional II DSC-2C	4+1=5				
BS 307 Optional III DSC-3C	4+1=5				
TOTAL	25				
SECOND YEAR- SEMESTER IV					
BS 401 SEC 3: Molecular Plant Breeding SEC-3 2	2				
BS402 SEC 4: Intellectual Property Rights SEC-4 2	2				
BS 403 English CC-1D 3	3				
BS 404 Second language CC-2D 3	3				
BS 405 Optional I- Bioinformatics And Biostatistics DSC-1D 4T+3P=	7 4+1=5				
BS 406 Optional II DSC-2D	4+1=5				
BS 407 Optional III DSC-3D	4+1=5				
TOTAL	25				

THIRD YEAR- SEMESTER- V					
CODE	COURSE TITLE	COURSE TYPE	HPW	CREDITS	
BS 501	English	CC-1E	3	3	
BS 502	Second language	CC-2E	3	3	
BS 503	Fundamental and Applications of Biotechnology	GE	4	4	
BS 504	Optional I- A/B (A) Plant Biotechnology or (B) Medical Biotechnology	DSE -1E	4T+3P=7	4+1=5	
BS 505	Optional- II A/B	DSE -2E		4+1=5	
BS 506	Optional- III A/B	DSE -3E		4+1=5	
	TOTAL			25	
THIRD YEAR- SEMESTER- VI					
BS 601	Project in Genetics/Optional Paper	Project work/Opt.P		4	
BS 602	English	CC-1F	3	3	
BS 603	Second language	CC-2F	3	3	
BS 604	Optional I- A/B (A) Animal Biotechnology or (B) Environmental Biotechnology	DSE-1F	4T+3P=7	4+1=5	
BS 605	Optional- II A/B	DSE -2F		4+1=5	

DSE -3F

4+1=5

25

150

Total credits= 164-12 (AECC 4 + SEC 8) =15

AECC: Ability Enhancement Compulsory Course

TOTAL

TOTAL Credits

SEC: Skill Enhancement Course
DSC: Discipline Specific Course
DSE: Discipline Specific Elective

GE: Generic Elective

Optional- III A/B

BS 606

B.Sc BIOTECHNOLOGY I YEAR SEMESTER- I

DSC-Paper- I: CELL BIOLOGY AND GENETICS

1. Unit: Cell structure and Functions

- 1.1. Cell as basic unit of living organisms-bacterial, fungal, plant and animal cells
- 1.2. Ultrastructure of prokaryotic cell (cell membrane and plasmids, Nucleoid)
- 1.3. Ultrastructure of eukaryotic cell (cell wall, cell membrane, nucleus, mitochondria, chloroplast, endoplasmic reticulum, Golgi apparatus, vacuoles)
- 1.4. Fluid mosaic model, Sandwich model, Cell membrane permeability
- 1.5. Structure of chromosome-morphology, components of chromosomes (histones and non-histones), specialized chromosomes (Polytene, Lampbrush)
- 1.6. Chromosomal aberrations- structural and numerical

2. Unit: Cell Division and Cell cycle

- 2.1. Bacterial cell division
- 2.2. Eukaryotic cell cycle –phases
- 2.3. Mitosis Stages (spindle assembly)-significance
- 2.4. Meiosis- Stages (synaptonemal complex)-significance
- 2.5. Senescence and necrosis
- 2.6. Apoptosis

3. Unit: Principles and mechanism of inheritance

- 3.1. Mendel's experiments- factors contributing to success of Mendel's experiments
- 3.2. Law of segregation- Monohybrid Ratio; Law of independent assortment- Dihybrid Ratio, Trihybrid Ratio
- 3.3. Deviation from Mendel's laws- partial or incomplete dominance (eg: Flower Color in Mirabilis jalapa), Co-dominance (eg: MN Blood groups), Non allelic interactions-types of epistasis, modification of dihybrid ratios
- 3.4. Penetrance and Expressivity (eg: Polydactyly, Waardenburg syndrome), pleiotropism, phenocopy- microcephaly, cleft lip.
- 3.5. Multiple alleleism (eg: Coat color in Rabbits, eye color in Drosophila and ABO Blood groups)
- 3.6. X-Y chromosomes Sex determination in Drosophila, Man, X-linked inheritance—Hemophilia and Color blindness; X-inactivation.

4. Unit: Linkage, Recombination and Extension to Mendel's Laws

- 4.1. Linkage and recombination- Cytological proof of crossing over, phases of linkage, recombination frequency, gene mapping and map distance
- 4.2. Non-Mendelian Inheritance Maternal effect (Shell coiling in snail), variegation in leaves of Mirabilis jalapa
- 4.3. Cytoplasmic male sterility in Maize.
- 4.4. Mitochondrial inheritance in human and poky in Neurospora crassa
- 4.5. Chloroplast inheritance in Chlamydomonas
- 4.6. Hardy-Weinberg Equilibrium.

CORE-I: PRACTICALS CELL BIOLOGY AND GENETICS

- 1. Microscopic observation of cells: bacteria, fungi, plant and animal
- 2. Preparation of different stages of Mitosis (onion root tips)
- 3. Preparation of different stages of Meiosis (grasshopper testis)
- 4. Preparation of Polytene chromosome from Drosophila salivary gland
- 5. Monohybrid and dihybrid ratio in Drosophila
- 6. Monohybrid and dihybrid ratio in Maize
- 7. Problems on co-dominance, Epistasis, two point and three point test cross, gene mapping.
- 8. Statistical applications of Hardy-Weinberg Equilibrium

Spotters:

- 1. Prokaryotic Cell(Bacteria),
- 2. Mitochondria.
- 3. Chlorolplast,
- 4. Polytene Chromosomes,
- 5. Test Cross,
- 6. Blood Grouping,
- 7. Hemophilia Pedigree,
- 8. Crossing Over
- 9. Synaptonemal Complex,
- 10. Nucleosome Model.

REFERENCE BOOKS

- 1. Cell & Molecular Biology. E.D.D De Robertis & E.M.F De Robertis, Waverly publication
- 2. An introduction to Genetic Analysis by Anthony, J.F. J.A. Miller, D.T. Suzuki, R.C. Richard Lewontin, W.M-Gilbert, W.H. Freeman publication
- 3. Principles of Genetics by E.J.Gardner and D.P. Snusted. John Wiley & Sons, New York
- 4. The science of Genetics, by A.G. Atherly J.R. Girton, J.F. Mcdonald, Saundern College publication
- 5. Principles of Genetics by R.H. Tamarin McGrawhill
- 6. Theory & problems in Genetics by Stansfield, Schaum out line series McGrawhill
- 7. Molecular Cell Biology Lodish, H., Baltimore, D; fesk, A., Zipursky S.L., Matsudaride, P. and Darnel. American Scientific Books. W.H. Freeman, New York
- 8. The cell: A molecular approach. Geoffrey M Cooper, Robert E Hausman, ASM press
- 9. Cell and Molecular Biology, Concepts and Experiments Gerald Karp, John Wiley & Sons, Inc.
- 10. Cell Biology And Genetics by P.K. GUPTA

B.Sc BIOTECHNOLOGY I YEAR SEMESTER- II

DSC-Paper- II: BIOLOGICAL CHEMISTRY AND MICROBIOLOGY

1. Unit 1: Biomolecules

- 1.1. Carbohydrates- importance, classification; structure and functions of monosaccharides (glucose & fructose), disaccharides (sucrose, lactose & maltose) and polysachharides (starch, glycogen & insulin)
- 1.2. Amino acids- importance, classification, structure, physical and chemical properties of amino acids; peptide bond formation
- 1.3. Proteins- importance, structure of proteins- primary, secondary, tertiary and quaternary
- 1.4. Lipids- importance, classification- simple lipids (triacylglycerides & waxes), complex lipids (phospholipids & glycolipids), derived lipids (steroids, terpenes & carotenoids)
- 1.5. Nucleic acids :structure and chemistry of DNA (Watson and crick) and RNA(TMV) Structure and forms of DNA (A, B and Z)
- 1.6. Enzymes- importance, classification and nomenclature; Michaelis-Menton Equation, factors influencing the enzyme reactions; enzyme inhibition (competitive, uncompetitive & mixed), co-enzymes

2. Unit: Bioenergetics

- 2.1 Glycolysis, Tricarboxylic Acid (TCA) Cycle,
- 2.2 Electron Transport, Oxidative Phosphorylation
- 2.3 Gluconeogenesis and its significance
- 2.4 Transamination and Oxidative deamination reactions of amino acids
- 2.5 B-Oxidation of Fatty acids
- 2.6 Glyoxalate cycle.

3. Unit: Fundamentals of Microbiology

- 3.1 Historical development of microbiology and contributors of microbiology
- 3.2 Microscopy: Bright field microscopy, Dark field microscopy, Phase contrast microscopy, Fluorescent microscopy, Scanning and Transmission electron microscopy
- 3.3 Outlines of classification of microorganisms
- 3.4 Structure and general characteristics of bacteria and virus
- 3.5 Disease causing pathogens and symptoms (Eg: *Mycobacterium*, *Hepatitis*)
- 3.6 Structure and general characteristics of micro-algae and fungi

4. Unit: Culture and identification of microorganisms

- 4.1 Methods of sterilization-physical and chemical methods
- 4.2 Bacterial nutrition nutritional types of bacteria, essential macro micro nutrients and growth factors.
- 4.3 Bacterial growth curve-batch and continuous cultures, synchronous cultures measurement of bacterial growth-measurement of cell number and cell mass.
- 4.4 Factors affecting bacterial growth
- 4.5 Culturing of anaerobic bacteria and viruses
- 4.6 Pure cultures and its characteristics

PRACTICALS

BIOCHEMISTRY AND MICROBIOLOGY

- 1. Preparation of normal molar, molal solutions.
- 2. Preparation of buffers (acidic, basic ,neutral)
- 3. Qualitative tests of sugars, amino acids and lipids
- 4. Estimation of total sugars by anthrone method
- 5. Separation of amino acids by paper chromatography
- 6. Estimation of proteins by biuret method
- 7. Sterilization methods
- 8. Preparation of microbiological media (bacterial, algal & fungal)
- 9. Isolation of bacteria by streak, spread and pour plate methods
- 10. Isolation of bacteria from soil
- 11. Simple staining and differential staining (gram's staining)
- 12. Bacterial growth curve
- 13. Technique of micrometry(ocular and stage)

Spotters:

- 1. Osazone
- 2. Globular protein
- 3. Lock and key model
- 4. Completive inhibition
- 5. RUBISCO
- 6. ATP synthase
- 7. Autoclave
- 8. Laminar air flow
- 9. Tyndalization
- 10. Bacterial growth curve
- 11. Hot air oven
- 12. Serial dilution technique

REFERENCE BOOKS

- 1. Lehninger Principles of Biochemistry By: David L. Nelson and Cox
- 2. Biochemistry By: Rex Montgomery
- 3. Harper's Biochemistry By: Robert K. Murray
- 4. Enzymes By: Trevor Palmer
- 5. Enzyme structure and mechanism By: AlanFersht
- 6. Principles of Biochemistry By: Donald J. Voet, Judith G. Voet, Charlotte W. Pratt
- 7. Analytical Biochemistry By: Cooper
- 8. Principles and techniques of Biochemistry and Molecular Biology Edited By: Keith Wilson and John Walker
- 9. Practical Biochemistry By: Plummer
- 10. Biology of Microorganisms by: Brock, T.D. and Madigan, M.T.
- 11. Microbiology by: Prescott, L.M., Harley, J.P. Klein, D.A.
- 12. Microbiology by: Pelczar, M.J., Chan, E.C.S., Ereig, N.R.
- 13. Microbiological applications by: Benson

QUESTION PAPER PATTERN FACULTY OF SCIENCE B.SC. BIOTECHNOLOGY

Title of the Paper: [Duration: 3 Hours]

[Max Marks=80M]

SECTION-A

Short Answer type questions Answer any EIGHT questions (TWO FROM EACH PART) [8x4=32M]

PART A:

- 1. Unit I
- 2. Unit I
- 3. Unit I

PART B:

- 4. Unit II
- 5. Unit II
- 6. Unit II

PART C:

- 7. Unit III
- 8. Unit III
- 9. Unit III

PART D:

- 10. Unit IV
- 11. Unit IV
- 12. Unit IV

SECTION-B

Essay Answer type question Answer all questions [4x12=48M]

- 13. (a) Unit I OR
 - **(b) Unit I**
- 14. (a) Unit –II

OR

- (b) Unit -II
- 15. (a) Unit III

OR

- (b) Unit III
- 16. (a) Unit- IV

OR

(b) Unit-IV